Abstract
As technology scales, integrating high resolution ADCs into high fidelity mixed signal systems becomes challenging in advanced CMOS processes. Cascading integrators to achieve high-order filter structures limits the modulation index and compromises on stability at the expense of added hardware and power consumption. To optimize the maximum stable amplitude (MSA) to accommodate a larger input dynamic range, the supply rails have to be expanded, which limited technology choices to those of a larger feature size. This work proposes a 25 kHz 3rd-order continuous-time $\Delta \Sigma $ modulator (CT $\Delta \Sigma \text {M}$ ) utilizing a 5-bit SAR quantizer, enabling noise coupling (NC) to be possible in a typical nanoscale CMOS 65 nm technology with VDD of 1 V. Mismatches in SAR comparator and DAC array are mitigated with a proposed calibration scheme while CM mismatches are solved by a floating differential charge storage capacitor (FDCSC) coupling method. To allow sufficient time for SAR bit cycling and noise charge feedback settling, 1 Ts excess loop delay (ELD) is compensated with digital differentiation that minimizes both the power and complexity of the auxiliary feedback DAC. The prototype obtained DR/SNR/SNDR of 103.1 dB/100.1 dB/95.2 dB while dissipating 0.8 mW, hence achieving a FoMSNDR and FoMschreier of 0.34 pJ/level and 177.9 dB, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.