Abstract

This article presents a split time-interleaved (TI) successive-approximation register (SAR) analog-to-digital converter (ADC) with digital background timing-skew mismatch calibration. It divides a TI-SAR ADC into two split parts with the same overall sampling rate but different numbers of TI channels. Benefitting from the proposed split TI topology, the timing-skew calibration convergence speed is fast without any extra analog circuits. The input impedance of the overall TI-ADC remains unchanged, which is essential for the preceding driving stage in a high-speed application. We designed a prototype seven-/eight-way split TI-ADC implemented in 28-nm CMOS. After a digital background timing-skew calibration, it reaches a 54.2-dB signal-to-noise-and-distortion ratio (SNDR) and 67.1-dB spurious free dynamic range (SFDR) with a near Nyquist rate input signal and a 2.5-GHz effective resolution bandwidth (ERBW). Furthermore, the power consumption of ADC core (mismatch calibration off-chip) is 12.2-mW running at 1.6 GS/s, leading to a Walden figure-of-merit (FOM) of 18.2 fJ/conv.-step and a Schreier FOM of 162.4 dB, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.