Abstract

A 1.5-ns access time, 78- mu m/sup 2/ memory-cell size, 64-kb ECL-CMOS SRAM has been developed. This high-performance device is achieved by using a novel ECL-CMOS SRAM circuit technique: a combination of CMOS cell arrays and ECL word drivers and write circuits. These ECL word drivers and write circuits drive the CMOS cell arrays directly without any intermediate MOS level converter. In addition to the ultrahigh-speed access time and relatively small memory-cell size, a very short write-pulse width of 0.8 ns and sufficient soft-error immunity are obtained. This ECL-CMOS SRAM circuit technique is especially useful for realizing ultrahigh-speed high-density SRAMs, which have been used as cache and control storages of mainframe computers.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call