Abstract
A 0.8- mu m polycide-gate, double-layer-metal CMOS technology is described. Nominal device gate lengths down to 0.8 (+or-0.2) mu m are used for both n- and p-channel transistors. Compact isolation, 175-A gate oxide grown in dry/wet/dry ambient, shallow-junction halo-implanted lightly doped drain n and p devices, TiN contact barrier, and a planarized double-layer-metal process are all integrated and demonstrated with a 0.8- mu m full-CMOS 16K SRAM (static random-access memory) circuit. The device process integrity, design margins, performance, reliability, product yield and speed enhancement are all discussed in detail.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.