Abstract

Conventional data-aware structure SRAMs consume unnecessary dynamic power during the read phase due to the read-half-select issue. In this paper, a 9T-based read-half-select disturb-free SRAM architecture with the cross-point data-aware write strategy is proposed. Based on the proposed write-half-select and read-half-select disturb-free strategy, our 9T bitcell structure improves the read and write SNM by 2.5X and 2.4X compared to traditional bitcells. Furthermore, the proposed strategy and 9T bitcell structure can reduce the read power dissipation on bitline of the SRAM array by 5.14X compared with traditional SRAMs. Based on the proposed architecture, a 16Kb SRAM is fabricated in a 130nm CMOS which is fully functional from 1.2V down to 0.33V. The minimal energy per cycle is 11.8pJ at 0.35V. The power consumption at 0.33V is 2.5µW with 175kHz. The proposed SRAM has 1.5X and 4.2X less total power and leakage power than other works.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.