Abstract
A 0.3–1.4 GHz all-digital phase locked loop (ADPLL) with an adaptive loop gain controller (ALGC), a 1/8-resolution fractional divider and a frequency search block is presented. The ALGC reduces the nonlinearity of the bang-bang phase-frequency detector (BBPFD), reducing output jitter. The fractional divider partially compensates for the large input phase error caused by fractional-N frequency synthesis. A fast frequency search unit using the false position method achieves frequency lock in 6 iterations that correspond to 192 reference clock cycles. A prototype ADPLL using a BBPFD with a dead-zone-free retimer, an ALGC, a fractional divider, and a digital logic implementation of a frequency search algorithm was fabricated in a 0.13- <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\mu{\hbox {m}}$</tex></formula> CMOS logic process. The core occupies 0.2 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">${\hbox {mm}}^{2}$</tex> </formula> and consumes 16.5 mW with a 1.2-V supply at 1.35-GHz. Measured RMS and peak-to-peak jitter with activating the ALGC are 3.7 ps and 32 ps respectively.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have