Abstract
In this paper, we propose a μ-mode integrator for computing the solution of stiff evolution equations. The integrator is based on a d-dimensional splitting approach and uses exact (usually precomputed) one-dimensional matrix exponentials. We show that the action of the exponentials, i.e. the corresponding batched matrix-vector products, can be implemented efficiently on modern computer systems. We further explain how μ-mode products can be used to compute spectral transforms efficiently even if no fast transform is available. We illustrate the performance of the new integrator by solving, among the others, three-dimensional linear and nonlinear Schrödinger equations, and we show that the μ-mode integrator can significantly outperform numerical methods well-established in the field. We also discuss how to efficiently implement this integrator on both multi-core CPUs and GPUs. Finally, the numerical experiments show that using GPUs results in performance improvements between a factor of 10 and 20, depending on the problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.