Abstract

Multicore processors and a variety of accelerators have allowed scientific applications to scale to larger problem sizes. We present a performance, design methodology, platform, and architectural comparison of several application accelerators executing a Quantum Monte Carlo application. We compare the application's performance and programmability on a variety of platforms including CUDA with Nvidia GPUs, Brook+ with ATI graphics accelerators, OpenCL running on both multicore and graphics processors, C++ running on multicore processors, and a VHDL implementation running on a Xilinx FPGA. We show that OpenCL provides application portability between multicore processors and GPUs, but may incur a performance cost. Furthermore, we illustrate that graphics accelerators can make simulations involving large numbers of particles feasible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call