Abstract

Hydroxyl-polycyclic aromatic hydrocarbons (OH-PAHs) are biomarkers for assessing the exposure levels of polycyclic aromatic hydrocarbons (PAHs). A series of stable isotope mass tags (SIMT-332/338/346/349/351/354/360/363/374/377) were firstly designed and synthesized to perform multiplexed stable isotope labeling derivatization (MSILD) of OH-PAHs in human plasma and urine. Their derivatives were enriched and purified by magnetic dispersive solid phase extraction (MDSPE) using prepared Fe3O4/GO and then determined by ultra high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) in multiple reaction monitoring mode. 9-Plexed MSILD reagents were prepared using pipemidic acid as core structure with different isotope mass tags, in which carbonyl chloride group was used to label OH-PAHs. The SIMT-346 labeled OH-PAHs standards were used as internal standards, which can greatly increase the quantitative accuracy. 9-Plex labeled nine different real samples can be quantified by UHPLC-MS/MS in a single run. Under optimized MSILD-MDSPE conditions, good linearities of seven OH-PAHs were obtained with satisfactory coefficient of determination R2 > 0.991. Limits of detection (LODs) of seven OH-PAHs were from 0.1 to 0.5 pg/mL, and limits of quantitation (LOQs) ranged from 0.5 to 2.0 pg/mL. The intra- and inter-day precisions ranged in 2.3–12.4% with accuracies in the range of 91.7–108.4%. Acceptable results of matrix effect (89.7–105.7%) and derivatization efficiency (> 96.4%) were obtained. In short, the developed method has been proved to be high-throughput, sensitive, accurate and easy-handling. This method was applied for the measurement of seven free OH-PAHs in human urine and plasma, and expected to provide technical support for the evaluation of PAHs exposure levels in humans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call