Abstract
This paper presents a novel connection and control strategy for a hydrogen generation system using a proton exchange membrane electrolyzer powered by solar energy in an off-grid area without network backup. Given that, the proposed architecture is based on the indirect control of the Photovoltaic plant (achieved by removing a power-converter), the presented solution is more efficient and more reliable than the traditional scheme. Furthermore, with this innovation one can reach the same hydrogen production with smaller electrolyzers.The methodology includes detailed models of the photovoltaic panel and the electrolyzer, along with a control strategy that considers the degradation mechanisms of the electrolyzer to ensure reliable and prolonged operation. The results show that the proposed strategy keeps the operating power of the electrolyzer constant, even under variations in irradiance, thanks to energy storage in batteries. It is demonstrated that the proposed system offers efficiency above 99.6% during the analyzed period, with a 100% utilization rate of the electrolyzer, avoiding periods of inactivity and high current peaks. The study also includes simulations and experimental tests that confirm the feasibility and effectiveness of the presented solution, highlighting its advantages in terms of efficiency and investment costs compared to direct connections and other existing methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.