Abstract

Cell-based screening of a privileged small molecule library led to the discovery of 9-sulfonyl-9(H)-purine as new scaffold for hepatitis C virus (HCV) inhibitors. Structure–activity relationship study with respect to the 2-, 6- and 9-positions in the purine core resulted in the identification of several active compounds with moderate potency against the HCV genotype 1b. Subsequent stability studies demonstrated that HCV inhibitors of this type were unstable in Dulbecco’s modified eagle medium (DMEM) and plasma, as well as glutathione-containing water, and their instability was closely related to their HCV inhibitory activity. A preliminary study of the mechanism of action showed that the sulfonamide bond at the 9-position of purine would be the primary degradation site and the resulting sulfonylation degradation species would mediate the anti-HCV activity of 9-sulfonyl-9(H)-purines. Results of this study demonstrated that 9-sulfonyl-9(H)-purine is an unstable scaffold for HCV inhibitors and further detailed analysis of the degradation species is needed to determine the main active components and direct target for this type of molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call