Abstract

Hexagonal lattice–like structural forms are present in the nanostructures of several two-dimensional materials. The effective mechanical properties of these materials can be expressed on the basis of an equivalent continuum-based assumption. We focus on nanoscale analysis of the structures of such materials in this chapter based on a generalized analytical approach leading to closed-form formulae for the elastic moduli. Two different classes of single-layer materials (monoplanar and multiplanar) from a structural point of view are considered to demonstrate the results using these analytical formulae. The physics-based high-fidelity analytical models presented in this chapter are capable of obtaining the elastic properties in a computationally efficient manner for wide range of materials with hexagonal nanostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.