Abstract

Atom transfer radical cyclization reactions of N-(4-pentenyl)iodoacetamides were investigated. The reactions were efficiently promoted by BF3.OEt2. For N-alkenyl-substituted iodoamides, excellent regioselectivity in favor of 8-endo cyclization was observed, while both 7-exo and 8-endo cyclization products were formed with the 8-endo cyclization preferred in the cases of N-(2-allylphenyl)-substituted iodoamides. Density functional theory calculations at the B3LYP/6-31G level revealed that both the s-trans and the s-cis conformational transition structures were feasible for the 8-endo cyclization of N-alkenyl-substituted alpha-carbamoyl radicals while 7-exo transition structures were much less stable. For the cyclization of N-(2-allylphenyl)-substituted alpha-carbamoyl radicals, the transition structures for 8-endo and 7-exo cyclizations were of comparable energy. These results were in excellent agreement with the experimental observations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call