Abstract

ObjectiveEight repetitive nucleotide sequences of aspartate–serine–serine (8DSS) derived from dentin phosphoprotein (DPP) has been proved to be a good remineralization agency. In this study, 8DSS peptide was employed to induce dentinal tubule occlusion. MethodsDentin samples were acid-etched, and then the samples were coated with 8DSS solution. The binding capacity of 8DSS to acid-etched dentin was tested by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Subsequently, the 8DSS-treated dentin samples were immersed in artificial saliva for 1, 2 and 4 weeks. After 4 weeks, the remineralized dentin was treated with 6wt% citric acid (pH 1.5) solution for 1min. Dentin permeability measurement and scanning electron microscopy (SEM) were carried out after different periods. Energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) were used to identify the mineral phase of the regenerated minerals. ResultsThe results showed that 8DSS had a good binding capacity to the acid-etched dentin, and significantly reduced the dentin permeability by inducing minerals deposited within the dentinal tubules. After 4 weeks, all the dentinal tubules were occluded by large bulk of regenerated minerals, which largely decreased the diameters of the tubules. The regenerated minerals deposited with a deep depth within the dentinal tubules, ensuring an effective occlusion even after an acid challenge. The results of XRD and EDS confirmed that the regenerated minerals were mainly hydroxyapatite (HA). Significance8DSS peptide induced strong dentinal tubule occlusion. 8DSS have a great potential to be used in the treatment of dentin hypersensitivity in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call