Abstract
Due to the high volume of documents in the pedestrian safety field, the current study conducts a systematic bibliometric analysis on the researches published before October 3, 2021, based on the science-mapping approach. Science mapping enables us to present a broad picture and comprehensive review of a significant number of documents using co-citation, bibliographic coupling, collaboration, and co-word analysis. To this end, a dataset of 6311 pedestrian safety papers was collected from the Web of Science Core Collection database. First, a descriptive analysis was carried out, covering whole yearly publications, most-cited papers, and most-productive authors, as well as sources, affiliations, and countries. In the next steps, science mapping was implemented to clarify the social, intellectual, and conceptual structures of pedestrian-safety research using the VOSviewer and Bibliometrix R-package tools. Remarkably, based on intellectual structure, pedestrian safety demonstrated an association with seven research areas: “Pedestrian crash frequency models”, “Pedestrian injury severity crash models”, “Traffic engineering measures in pedestrians’ safety”, “Global reports around pedestrian accident epidemiology”, “Effect of age and gender on pedestrians’ behavior”, “Distraction of pedestrians”, and “Pedestrian crowd dynamics and evacuation”. Moreover, according to conceptual structure, five major research fronts were found to be relevant, namely “Collision avoidance and intelligent transportation systems (ITS)”, “Epidemiological studies of pedestrian injury and prevention”, “Pedestrian road crossing and behavioral factors”, “Pedestrian flow simulation”, and “Walkable environment and pedestrian safety”. Finally, “autonomous vehicle”, “pedestrian detection”, and “collision avoidance” themes were identified as having the greatest centrality and development degrees in recent years.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Machine Tool Design and Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.