Abstract

Bacterial cell envelopes often contain a flagellar motor – a reversible rotary nanomachine with an approximate diameter of 45nm – that allows cells to swim. Power is provided by the movement of H+ or Na+ down the electrochemical gradients across the cytoplasmic membrane, often termed the proton motive force or sodium motive force. A helical filament is rotated by each motor at several hundred revolutions per second. In many species, the motor switches direction stochastically; switching rates are controlled by a network of sensory and signaling proteins. The first direct observation, approximately 40 years ago, of the function of a single molecular motor was of the bacterial flagellar motor. Nevertheless, due to the large size and complexity of the motor, much remains to be discovered about this nanomachine, particularly the many structural details of the torque-generating mechanism. This chapter summarizes what has been learned about the structure and function of the motor with a focus on recent observations, particularly those obtained using single molecule techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.