Abstract

The inward-flow radial turbine covers tremendous ranges of power, rates of mass flow, and rotational speeds from very large Francis turbines used in hydroelectric power generation and developing hundreds of megawatts down to tiny closed cycle gas turbines for space power generation of a few kilowatts. The widespread adoption of variable geometry turbines for diesel engine turbochargers has been the major factor in increasing the commercial use of this technology. Variable area is commonly, but not exclusively, achieved by pivoting the nozzle vanes about an axis disposed in the span-wise direction. The most common radial-inflow turbine applications are turbochargers for internal combustion engines, natural gas, diesel, and gasoline powered units. The advantage of a turbocharger is that it compresses the air, thus letting the engine squeeze more air into a cylinder, and more air means that more fuel can be added. Applications of turbo expanders in the chemical industry abound in the petrochemical and chemical industries. Turbo expanders using radial-inflow turbines have a much higher ruggedness than turbo expanders using axial-flow turbines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.