Abstract

Polyimides, prepared from a variety of dianhydride and diamine monomers, are characterized by repeating imide structural units (I) in the polymer backbone. This structure contributes to the exceptional thermal and oxidative stability of polyimides. It is necessary to have the imide structure along with the aromatic moieties because wholly aromatic polymers such as polyphenylenes are not as thermo-oxidatively resistant as polyimides. The combination of the aromatic structure and the imide structure results in a polymer with a high glass transition temperature (Tg) and high thermo-oxidative stability. These aromatic polyimides can be processed either as thermosetting or thermoplastic resins, depending on the processing characteristics of the polymer resin or the process required to transform the prepolymer resin into the final form or shape. These polymers are broken down conveniently into three categories, depending on their processing characteristics. One of these categories includes thermoplastic polyimides. The polyimides in this first category are processed via precursors that undergo condensation reactions to form the final product. The precursors are usually the amic acid or the amic ester intermediate. They are tractable, soluble in common organic solvents, and generally applied as lacquers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.