Abstract

High-power narrow linewidth fiber lasers are extensively applied in coherent detection and power-spectrum beam combination etc. The suppressing method of stimulated Brillouin scattering is analyzed. And the theory of sinusoidal phase modulation is analyzed also. A single frequency laser is broadened to become a 2.9 GHz linewidth seed by sinusoidal phase modulation technology. The power of the seed is then boosted from 50 mW to 780 W through a three-stage power amplifiber configuration. Central wavelength and linewidth of the laser are 1064.34 nm and 2.9 GHz respectively, with an optical-optical efficiency being 79%. And the beam quality is Mx2 =1.44 and My2 =1.43. The output powers before and after phase modulation are compared with each other. And the reason why output power increases is analyzed. The stimulated Brillouin scattering threshold is promoted by added longitudinal mode. Finally, the output power is promoted after phase modulation, so that the output power of this laser is only limited by the pump power. If the pump power is increased, the higher output power of narrow linewidth fiber laser will be achieved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call