Abstract
After etching, n-type cast polycrystalline silicon photoanodes immersed in a solution of methanol and a substituted ferrocene reagent exhibit photoelectrode efficiencies of 7.2%±0.7% under simulated AM2 illumination. Scanning laser spot data indicate that the grain boundaries are active; however, the semiconductor/liquid contact does not display the severe shunting effects which are observed at a polycrystalline Si/Pt Schottky barrier. Evidence for an interfacial oxide on the operating polycrystalline Si photoanode is presented. Some losses in short circuit current can be ascribed to bulk semiconductor properties; however, despite these losses, photoanodes fabricated from polycrystalline substrates exhibit efficiencies comparable to those of single crystal material. Two major conclusions of our studies are that improved photoelectrode behavior in the polycrystalline silicon/methanol system will primarily result from changes in bulk electrode properties and from grain boundary passivation, and that Fermi level pinning by surface states does not prevent the design of efficient silicon-based liquid junctions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.