Abstract
The Great Oxidation Event (GOE) was an increase in atmospheric oxygen levels from less than 1ppm to 0.2–2% by volume 2.4–2.2 billion years ago. In atmospheric chemistry, hydrogen-bearing reduced gases, such as methane and hydrogen, are adversaries of O2. When the concentration of hydrogen-bearing reduced gases goes up, O2 declines, and vice versa. Thus, the pre-GOE atmospheric redox chemistry should have been dominated by methane and hydrogen. Before the GOE, oxygen was driven to trace levels by reactions with volcanic and metamorphic reductants, including dissolved cations (e.g., Fe2+) in surface waters and reducing gases (H2, CH4, CO, SO2, and H2S). Rapid escape of hydrogen to space from such an atmosphere would have slowly oxidized the Earth. A ‘tipping point’ was reached when the flux of O2 associated with the burial of organic carbon exceeded O2 losses. Oxidative weathering then became significant. Models suggest that methane level fell before the GOE and such loss of greenhouse gases plausibly caused global cooling. Multiple glaciations during 2.45–2.22Ga hint that the climate and atmospheric composition oscillated until permanent oxygenation was established. Subsequent levels of O2 were sufficient to protect the Earth's surface from harmful ultraviolet with a stratospheric ozone layer.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.