Abstract

Methods of transmission and scanning electron microscopy and nuclear magnetic resonance (NMR) at 63Cu nuclei, as well as measurements of the static magnetic susceptibility χ(T) have been used to study a shape-memory alloy (SMA) Ti50Ni25Cu25, which experiences a thermoelastic martensite transformation. The alloy was obtained from an amorphous ribbon in a bimodal nano- and submicrocrystalline state via a crystallization annealing for 1 h at 770 K with a subsequent quenching to room-temperature water. The resultant B2 austenite is characterized by a fine structure of the 63Cu NMR spectra, which is connected with the different distribution of 63Cu atoms on the second coordination shell. The evolution of the shape of the spectra with decreasing temperature reveals a structural transition B2 → B19. In addition, the 63Cu NMR spectra, just as the transmission electron microscopy, indicate the presence of phase separation in the alloy, with the precipitation of a TiCu (B11) phase. The temperature dependence of the static magnetic susceptibility χ(T) also indicates the occurrence of a structural transition and has a hysteretic nature of “stepped” type. The discovered stepped nature of the χ(T) dependence is explained by the bimodal size distribution of grains of the B2 phase due to the size effect of the martensitic transformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.