Abstract
Four separate experiments were carried out to investigate the effect of extremely low frequency magnetic field (MF) exposure (60 Hz, 1 mT rms) on urinary 6-sulphatoxymelatonin (aMT6s) levels in Sprague-Dawley rats. In the first experiment, immature male rats maintained under a regular 12 h daily photoperiod (white fluorescent light) were exposed to a 20 h daily MF exposure for 6 weeks. The second experiment was similar to the first, except that the MF exposure was limited to 10 days. In the third experiment, adult male rats acclimated to a combination of continuous dim red light and regular 12 h daily photoperiod (white fluorescent) were subjected to a single 1 h exposure to intermittent MF (1 min on and 1 min off cycles), 2 h before fluorescent lights went off. The fourth experiment was similar to the third, except that the animals received 2 consecutive days of 20 h daily exposure to intermittent MF, beginning 1 h before the fluorescent lights went off each day. In all four experiments, the circadian profile of urinary aMT6s was examined before, during, and after the MF exposure. No significant effect of 1 mT MF on indoleamine metabolism was observed in any of the above experiments. However, in one of the experiments (no. 4), both the control and the MF groups showed a lower aMT6s level during the exposure days, when compared with that of pre- and post-exposure days, suggesting that the existence of possible effects with lower field strengths at the range of stray field cannot be ruled out.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.