Abstract

We demonstrate a 6 Gbps real-time optical quantum random number generator by measuring vacuum fluctuation. To address the common problem that speed gap exists between fast randomness generation and slow randomness extraction in most high-speed real-time quantum random number generator systems, we present an optimized extraction algorithm based on parallel implementation of Toeplitz hashing to reduce the influence of classical noise due to the imperfection of devices. Notably, the real-time rate of randomness extraction we have achieved reaches the highest speed of 12 Gbps by occupying less computing resources, and the algorithm has the ability to support hundreds of Gbps randomness extraction. By assuming that the eavesdropper with complete knowledge of the classical noise, our generator has a randomness generation speed of 6.83 Gbps and this supports the generation of 6 Gbps information-theoretically provable quantum random numbers, which are output in real-time through peripheral component interconnect express interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.