Abstract

Electroplating industry is an important application field of per- and polyfluoroalkyl substances (PFASs) as the chromium mist suppressants. 6:2 chlorinated polyfluoroalkyl ether sulfonate (6:2 Cl-PFAES) and perfluorooctanesulfonate (PFOS) have been the two widely used mist suppressants, and after the ban of PFOS, 6:2 Cl-PFAES will become the dominant suppressant. The behavior and mechanisms of 6:2 Cl-PFAES in the electroplating industry and the receiving environment were studied and compared with PFOS. 6:2 Cl-PFAES behaved similarly with PFOS due to their similar chemical structure. However, some difference exists for the relatively stronger hydrophobicity of 6:2 Cl-PFAES. Up to 35.7mg/L of PFOS and 13.4mg/L of 6:2 Cl-PFAES were found in the industrial wastewater influents, and were effectively reduced to 0.3-0.8mg/L by the interaction with chromium hydroxide through hydrophobic interaction and ligand exchange. The stronger hydrophobicity of 6:2 Cl-PFAES than PFOS resulted in its accumulation in the surface of foams and comparable or less removal during the industrial and municipal wastewater treatment. 6:2 Cl-PFAES exhibited higher bioaccumulation potential than PFOS in the surface water. 6:2 Cl-PFAES emitted by both mists and water may pose health risks to humans. More attentions towards 6:2 Cl-PFAES are needed after the replacement of PFOS by it in the electroplating industry as a global contaminant of emerging concerns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call