Abstract

Machado–Joseph disease (MJD) is caused by a (CAG)n trinucleotide repeat expansion that is translated into an abnormally long polyglutamine tract. This disease is considered the most common form of spinocerebellar ataxia (SCA). In the present study, we developed stable inducible cell lines (PC12Tet-On-Ataxin-3-Q28/84) expressing ataxin-3 with either normal or abnormal CAG repeats under doxycycline control. The expression of acetyl histone H3 and the induction of c-Fos in response to cAMP were strongly suppressed in cells expressing the protein with the expanded polyglutamine tract. Treatment with valproic acid, a histone deacetylase inhibitor (HDACi), attenuated mutant ataxin-3-induced cell toxicity and suppression of acetyl histone H3, phosphorylated cAMP-responsive element binding protein (p-CREB) as well as c-Fos expression. These results indicate that VPA can stimulate the up-regulation of gene transcription through hyperacetylation. Thus, VPA might have a therapeutic effect on MJD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.