Abstract
AbstractThe authors’ present a silicon‐on‐insulator (SOI) laterally diffused metal‐oxide‐semiconductor field‐effect transistor (LDMOSFET) with β‐Ga2O3 , which is a large bandgap semiconductor (β‐LDMOSFET), for increasing breakdown voltage (VBR) and power figure of merit. The fundamental purpose is to use a β‐Ga2O3 semiconductor instead of silicon material due to its large breakdown field. The characteristics of β‐LDMOSFET are analysed to those of standard LDMOSFET, such as VBR, ON‐resistance (RON), power figure of merit (PFOM), and radio frequency (RF) performances. The effects of RF, such as gate‐drain capacitance (CGD), gate‐source capacitance (CGS), transit frequency (fT), and maximum frequency of oscillation (fMAX) have been investigated. The β‐LDMOSFET structure outperforms performance in the VBR by increasing it to 500 versus 84.4 V in standard LDMOSFET design. The suggested β‐LDMOSFET has RON ~ 2.3 mΩ.cm−2 and increased the PFOM (VBR2/RON) to 108.6 MW/cm2. All the simulations are done with TCAD and simulation models are calibrated with the experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.