Abstract

Fatigue crack growth rates (da/dN) in ambient laboratory air have been determined for a wide variety of materials from four basic α + β titanium alloy systems. Each material was cyclically loaded with a haversine waveform and a load ratio, R = 0.10. The results indicate that, at a constant value of stress-intensity range (ΔK), the width of the da/dN data band exceeds an order of magnitude. For example, at ΔK = 21 MPa·m1/2, a 50-fold difference in fatigue crack propagation rates is observed. Analysis of the crack growth rate data at this point indicates a systematic dependence on grain size (l), viz. that da/dN decreases with increasing l. An interpretation of this effect is offered in terms of reversed (cyclic) plastic zone size considerations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.