Abstract

Sirtuin is an NAD+-dependent histone deacetylase that is highly conserved among prokaryotes and eukaryotes. Sirtuin deacetylates histones and non-histone proteins, and it is involved in fungal growth and secondary metabolite production. Here, we screened 579 fungal culture extracts that inhibited the histone deacetylase activity of Sirtuin A (SirA), produced by the fungus Aspergillus nidulans. Eight fungal strains containing three Ascomycota, two Basidiomycota and three Deuteromycetes produced SirA inhibitors. We purified the SirA inhibitor from the culture broth of Didymobotryum rigidum JCM 8837, and identified it as 5-methylmellein-a known polyketide. This polyketide and its structurally-related compound, mellein, inhibited SirA activity with IC50 of 120 and 160 μM, respectively. Adding 5-methylmellein to A. nidulans cultures increased secondary metabolite production in the medium. The metabolite profiles were different from those obtained by adding other sirtuin inhibitors nicotinamide and sirtinol to the culture. These results indicated that 5-methylmellein modulates fungal secondary metabolism, and is a potential tool for screening novel compounds derived from fungi.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.