Abstract
Histone deacetylases (HDACs) always function as corepressors and sometimes as coactivators in the regulation of fungal development and secondary metabolite production. However, the mechanism through which HDACs play positive roles in secondary metabolite production is still unknown. Here, classical HDAC enzymes were identified and analyzed in Aspergillus flavus, a fungus that produces one of the most carcinogenic secondary metabolites, aflatoxin B1 (AFB1). Characterization of the HDACs revealed that a class I family HDAC, HosA, played crucial roles in growth, reproduction, the oxidative stress response, AFB1 biosynthesis, and pathogenicity. To a lesser extent, a class II family HDAC, HdaA, was also involved in sclerotia formation and AFB1 biosynthesis. An in vitro analysis of HosA revealed that its HDAC activity was considerably diminished at nanomolar concentrations of trichostatin A. Notably, chromatin immunoprecipitation experiments indicated that HosA bound directly to AFB1 biosynthesis cluster genes to regulate their expression. Finally, we found that a transcriptional regulator, SinA, interacts with HosA to regulate fungal development and AFB1 biosynthesis. Overall, our results reveal a novel mechanism by which classical HDACs mediate the induction of secondary metabolite genes in fungi.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.