Abstract

Hydroxamic acid and fatty acid collectors are commonly used in cassiterite flotation but face issues like poor selectivity, high dosage, and strict requirements on ore composition and grinding fineness. This study investigates the collecting performance of a novel flotation reagent, 5-dodecylsalicylaldoxime (DSA), in cassiterite flotation. DSA exhibits remarkable selectivity, achieving an impressive 82.5% recovery of Sn at a concentration of only 9 × 10−5 mol/L in single mineral flotation tests. Moreover, DSA significantly outperforms benzohydroxamic acid (BHA), enhancing Sn recovery by 33.55% in artificially mixed ore flotation experiments. In the flotation test of a copper–tin polymetallic ore, compared with the BHA flotation effect, the recovery rate of DSA increased by 12.29% when the Sn grade remained basically unchanged. Analyses such as zeta potential, FT-IR, and XPS indicate that DSA’s superior collecting performance stems from its stable adsorption onto cassiterite surfaces through a chelating ring formation, resembling the adsorption mechanism of hydroxamic acid collectors. Furthermore, DSA’s larger cluster size in the solution compared to BHA contributes to its enhanced selectivity and collectability. Overall, DSA emerges as a promising alternative to traditional cassiterite flotation collectors, offering a combination of enhanced selectivity, lower dosage requirements, and robustness in complex ore systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call