Abstract
ECRH driven transport of suprathermal electrons is studied in non-axisymmetric plasmas using a new Monte Carlo simulation technique in 5-D phase space. Two different phases of the ECRH driven transport of suprathermal electrons can be seen. The first is a rapid convective phase due to the direct radial motion of trapped electrons and the second is a slower phase due to the collisional transport. The important role of the radial transport of suprathermal electrons in the broadening of the ECRH deposition profile in W7-AS is clarified. The ECRH driven flux is also evaluated and considered in relation to the `electron root' feature recently observed in W7-AS. It is found that, at low collisionalities, the ECRH driven flux due to the suprathermal electrons can play a dominant role in the condition of ambipolarity, and thus the observed electron root feature in W7-AS is thought to be driven by the radial (convective) flux of ECRH generated suprathermal electrons. A possible scenario for this type of electron root is considered for the LHD plasma.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have