Abstract

In the context of 5-axis flank milling, the machining of non-developable ruled surfaces may lead to complex tool paths to minimize undercut and overcut. The curvature characteristics of these tool paths generate slowdowns affecting the machining time and the quality of the machined surface. The tool path has to be as smooth as possible while respecting the maximum allowed tolerance. In this paper, an iterative approach is proposed to smooth an initial tool path. An indicator of the maximum feedrate is computed using the kinematical constraints of the considered machine tool, especially the maximum velocity, acceleration and jerk. Then, joint coordinates of the tool path are locally smoothed in order to raise the effective feedrate in the area of interest. Machining simulation based on a N-buffer algorithm is used to control undercut and overcut. This method has been tested in flank milling of an impeller and can be applied in 3 to 5-axis machining.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.