Abstract

This paper studies optimization of tool path planning in 5-axis flank milling of ruled surfaces using advanced Particle Swarm Optimization (PSO) methods with machining error as an objective. We enlarge the solution space in the optimization by relaxing the constraint imposed by previous studies that the cutter must make contact with the boundary curves. Advanced Particle Swarm Optimization (APSO) and Fully Informed Particle Swarm Optimization (FIPS) algorithms are applied to improve the quality of optimal solutions and search efficiency. Test surfaces are constructed by systematic variations of three surface properties, cutter radius, and the number of cutter locations comprising a tool path. Test results show that FIPS is most effective in reducing the error in all the trials, while PSO performs best when the number of cutter locations is very low. This research improves tool path planning in 5-axis flank milling by producing smaller machining errors compared to past works. It also provides insightful findings in PSO based optimization of the tool path planning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call