Abstract

This article proposes a novel hybrid system, integrating high temperature MCFC-GT (molten carbonate fuel cell-gas turbine) and ORC (organic Rankine cycle), which provides the possibility to achieve high electrical and exergetic efficiencies owing to the subsequent electrical power output in the bottoming cycle. After developing a mathematical model, comprehensive energetic, exergetic, economic and environmental evaluations (4E analysis) are performed and a multi-objective optimization method is utilized to find optimal solutions while considering the exergetic and economic objectives simultaneously. Two conflicting objectives including total exergetic efficiency and total cost rate of the system in multi-objective optimization are taken into account to build a set of Pareto optimal solutions. This optimum solution results in the exergetic efficiencies of 35.6%, 44.3%, and 54.9% for the fuel cell system, ORC cycle and the whole hybrid system respectively, while the total cost of the plant is 0.294 M€ per year. The study reveals that introducing the ORC bottoming cycle leads to about 5% improvement in the exergetic efficiency of the proposed plant. Furthermore, a sensitivity analysis is conducted to investigate the effect of variation in economic parameters, the fuel unit cost and interest rate, on the Pareto optimal solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.