Abstract

Adaptative objects based on shape-memory materials are expected to significantly impact numerous technological sectors including optics and photonics. In this work, we demonstrate the manufacturing of shape-memory optical fibers from the thermal stretching of additively manufactured preforms. First, we show how standard commercially-available thermoplastics can be used to produce long continuously-structured microfilaments with shape-memory abilities. Shape recovery as well as programmability performances of such elongated objects are assessed. Next, we open the way for light-guiding multicomponent fiber architectures that are able to switch from temporary configurations back to user-defined programmed shapes. We strongly expect that such actuatable fibers with light-guiding abilities will trigger exciting progress of unprecedented smart devices in the areas of photonics, electronics, or robotics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.