Abstract

The shape memory effect and superelasticity appear in shape memory alloy (SMA). The large amount of strain by more than several hundreds percent can be recovered in shape memory polymer (SMP). The shape recovery and shape fixity can be used in SMP elements. These characteristics of shape memory materials (SMMs) can be applied to intelligent elements in various fields. In order to use these characteristics and design the SMM elements properly, it is important to understand the thermomechanical properties of SMAs and SMPs. The deformation behaviors of SMMs differ depending on the thermomechanical loading conditions. The main factors which affect these properties are strain rate, stress rate, temperature, subloop loading, temperature-controlled condition, strain holding condition and cyclic loading. In the present paper, the thermomechanical properties of TiNi shape memory alloy, polyurethane-shape memory polymer and their composite are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.