Abstract

Large variations of the heat load coming from the superconducting magnets to the cryoplant in a tokamak are an undesired consequence of the intrinsically pulsed operation of the machine. In this paper, the cryogenic circuit module of the 4C (Cryogenic Circuit Conductor and Coil) code is used to analyze a subset of the results on pulsed load driven transients experimentally simulated in 2011 in the HELIOS facility (HElium Loop for hIgh lOads Smoothing) at CEA Grenoble, France. We focus on the tests where the smoothing of the pulsed heat load from the supercritical helium loop to the saturated helium bath was achieved by means of a controlled bypass valve. To address this issue, the modeling capability of the cryogenic circuit module of the 4C code is extended to include PI controllers. The computed evolution of temperature, pressure and mass flow rate at different circuit locations shows a good agreement with the measurements, both in the SHe loop and in the LHe bath. These results confirm the accuracy of 4C and contribute a needed step in the process of validation of the code.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.