Abstract

All-solid fluorotellurite fibers are fabricated by using a rod-in-tube method. The core and cladding materials are TeO2-BaF2-Y2O3 (TBY) and AlF3-based glasses, respectively. Since the refractive index (∼1.46) of AlF3-based glass is much lower than that (∼1.84) of TBY glass, the zero-dispersion-wavelength of the fabricated fiber can be tuned from 2145 to 1507 nm by varying the fiber core diameter from 50 to 3 μm. By using a 0.6 m long all-solid fluorotellurite fiber with a core diameter of ∼7 μm as the nonlinear medium and a 2 μm femtosecond fiber laser as the pump source, 4.5 W supercontinuum (SC) generation from 1017 to 3438 nm is obtained for a launched pump power of ∼10.48 W. The corresponding optical-to-optical conversion efficiency is about 42.9%. In addition, no any damage of the fluorotellurite fiber is observed during the operation of the above SC light source. Our results show that all-solid fluorotellurite fibers are promising nonlinear media for constructing high power mid-infrared SC light sources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call