Abstract
High quality-factor (Q) optical resonators are a key component for ultra-narrow linewidth lasers, frequency stabilization, precision spectroscopy and quantum applications. Integration in a photonic waveguide platform is key to reducing cost, size, power and sensitivity to environmental disturbances. However, to date, the Q of all-waveguide resonators has been relegated to below 260 Million. Here, we report a Si3N4 resonator with 422 Million intrinsic and 3.4 Billion absorption-limited Qs. The resonator has 453 kHz intrinsic, 906 kHz loaded, and 57 kHz absorption-limited linewidths and the corresponding 0.060 dB m−1 loss is the lowest reported to date for waveguides with deposited oxide upper cladding. These results are achieved through a careful reduction of scattering and absorption losses that we simulate, quantify and correlate to measurements. This advancement in waveguide resonator technology paves the way to all-waveguide Billion Q cavities for applications including nonlinear optics, atomic clocks, quantum photonics and high-capacity fiber communications.
Highlights
High quality-factor (Q) optical resonators are a key component for ultra-narrow linewidth lasers, frequency stabilization, precision spectroscopy and quantum applications
These results demonstrate the potential to bring the performance of bulk optic and etched resonators to planar all-waveguide solutions and pave the path towards integrated all-waveguide Billion Q cavities for atomic clocks, quantum computing and communications, precision spectroscopy, and energy-efficient coherent communications systems
In this paper, we report a significant advancement in photonic integrated all-waveguide resonator performance and ultra-low loss waveguides, demonstrating a 422 Million intrinsic Q, a 453 kHz intrinsic linewidth, a 906 kHz loaded linewidth, and a corresponding linear loss of 0.060 dB m−1
Summary
High quality-factor (Q) optical resonators are a key component for ultra-narrow linewidth lasers, frequency stabilization, precision spectroscopy and quantum applications. These are the highest intrinsic and absorption loss-limited quality factors and lowest linewidth reported to date for a photonic integrated resonator, to the best of our knowledge This performance is achieved through a careful reduction of scattering and absorption loss components and the introduction of a thin, ~5 nm, blanket nitride layer and extra anneal step. The large resonator mode area and mode volume of this design enable the reduction of low-frequency noise components and the contributions to the integral linewidth originating from thermal dampening of photothermal noise These results demonstrate the potential to bring the performance of bulk optic and etched resonators to planar all-waveguide solutions and pave the path towards integrated all-waveguide Billion Q cavities for atomic clocks, quantum computing and communications, precision spectroscopy, and energy-efficient coherent communications systems
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.