Abstract

Inflammation is a defense mechanism that restores tissue damage and eliminates pathogens. Among the pattern recognition receptors that recognize danger or pathogenic signals, nucleotide oligomerization domains 1 and 2 (NOD1/2) have been identified to play an important role in innate immunity responses, and inhibition of NOD1 could be interesting to treat severe infections and inflammatory diseases. In this work, we identified the first selective NOD1 versus NOD2 pathway inhibitors at the nanomolar range based on a 4-anilinoquinazoline scaffold. We demonstrated that NOD1 inhibition occurs through the inhibition of receptor interacting protein kinase 2 (RIPK2), which is involved in its downstream signaling pathways. Compound 37 demonstrates no cytotoxicity, a selectivity for RIPK2 over epithelial and vascular endothelial growth factor receptors (EGFR/VEGFR), and a capacity to reduce pro-inflammatory cytokine IL-8 secretion. The structure of the RIPK2-compound 37 complex was resolved by crystallography. The 4-anilinoquinazoline scaffold offers novel perspectives to design NOD1-RIPK2 signaling inhibitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.