Abstract

Due to the significant achievements in SiC bulk material growth and in SiC device processing technology, this semiconductor has received a great interest for power devices, particularly for SiC high-voltage Schottky barrier rectifiers. The main difference to ultra fast Si pin diodes lies in the absence of reverse recovery charge in SiC SBDs. This paper reports on 4.5kV-8A SiC Schottky diodes / Si-IGBT modules. The Schottky termination design and the fabrication process gives a manufacturing yield of 40% for large area devices on standard starting material. Modules have been successfully assembled, containing Si-IGBTs and 4.5kV-SiC Schottky diodes and characterized in both static and dynamic regimes. The forward dc characteristics of the modules show an on-resistance of 33mohm.cm2 @ room temperatue (RT) and a very low reverse leakage current density (JR < 10 5A/cm2 @ 3.5kV). An experimental breakdown voltage higher than 4.7kV has been measured in the air on polyimide passivated devices. This value corresponds to a junction termination efficiency of at least 80% according to the epitaxial properties. These SiC SBDs are well suited for high voltage, medium current, high frequency switching aerospace applications, matching perfectly as freewheeling diodes with Si IGBTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.