Abstract
In this paper, we introduce and investigate additive \({\rho}\) -functional inequalities associated with the following additive functional equations $$\begin{array}{lll} \,\,\,\,\,\,\, f(x+y+z) - f(x)-f(y)-f(z) \,\,\,\, = 0 \\ 2f \left(\frac{x+y}{2}+z \right) - f(x)-f(y)-2f(z) = 0 \\ \,\,2f \left(\frac{x+y+z}{2} \right) - f(x)-f(y)-f(z) = 0\end{array}$$ Furthermore, we prove the Hyers–Ulam stability of the additive\({\rho}\) -functional inequalities in complex Banach spaces and prove the Hyers–Ulam stability of additive \({\rho}\) -functional equations associated with the additive \({\rho}\) -functional inequalities in complex Banach spaces.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have