Abstract

Toxicity identification plays a key role in maintaining human health, as it can alert humans to the potential hazards caused by long-term exposure to a wide variety of chemical compounds. Experimental methods for determining toxicity are time-consuming, and costly, while computational methods offer an alternative for the early identification of toxicity. For example, some classical ML and DL methods, which demonstrate excellent performance in toxicity prediction. However, these methods also have some defects, such as over-reliance on artificial features and easy overfitting, etc. Proposing novel models with superior prediction performance is still an urgent task. In this study, we propose a motifs-level graph-based multi-view pretraining language model, called 3MTox, for toxicity identification. The 3MTox model uses Bidirectional Encoder Representations from Transformers (BERT) as the backbone framework, and a motif graph as input. The results of extensive experiments showed that our 3MTox model achieved state-of-the-art performance on toxicity benchmark datasets and outperformed the baseline models considered. In addition, the interpretability of the model ensures that the it can quickly and accurately identify toxicity sites in a given molecule, thereby contributing to the determination of the status of toxicity and associated analyses. We think that the 3MTox model is among the most promising tools that are currently available for toxicity identification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call