Abstract

The application of chlorpyrifos (CPF), an organophosphorus pesticide to control insects, is associated with oxidative stress and reduced quality of life in humans and animals. Indole-3-propionic acid (IPA) is a by-product of tryptophan metabolism with high antioxidant capacity and has the potential to curb CPF-mediated toxicities in the hepatorenal system of rats. It is against this background that we explored the subacute exposure of CPF and the effect of IPA in the liver and kidney of thirty rats using five cohort experimental designs (n = 6) consisting of control (corn oil 2mL/kg body weight), CPF alone (5mg/kg), IPA alone (50mg/kg), CPF + IPA1 (5mg/kg + 25mg/kg), and CPF + IPA2 (5mg/kg + 50mg/kg). Subsequently, we evaluated biomarkers of hepatorenal damage, oxidative and nitrosative stress, inflammation, DNA damage, and apoptosis by spectrophotometric and enzyme-linked immunosorbent assay methods. Our results showed that co-treatment with IPA decreased CPF-upregulated serum hepatic transaminases, creatinine, and urea; reversed CPF downregulation of SOD, CAT, GPx, GST, GSH, Trx, TRx-R, and TSH; and abated CPF upregulation of XO, MPO, RONS, and LPO. Co-treatment with IPA decreased CPF-upregulated IL-1β and 8-OHdG levels, caspase-9 and caspase-3 activities, and increased IL-10. In addition, IPA averts CPF-induced histological changes in the liver and kidney of rats. Our results demonstrate that co-dosing CPF-exposed rats with IPA can significantly decrease CPF-induced oxidative stress, pro-inflammatory responses, DNA damage, and subsequent pro-apoptotic responses in rats' liver and kidneys. Therefore, supplementing tryptophan-derived endogenous IPA from exogenous sources may help avert toxicity occasioned by inadvertent exposure to harmful chemicals, including CPF-induced systemic perturbation of liver and kidney function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call