Abstract

Solar energy and biomass offer sustainable alternatives to meet the energy demand and reduce the environmental impact of fossil fuels. In this study, through mass and energy balances, a comparative analysis of energy, exergy, and environmental impact (LCA) was conducted on two renewable thermal sources: solar energy and coconut shell biomass, both coupled to a supercritical CO2 Brayton cycle (sCO2) with an organic Rankine cycle (ORC) for waste heat recovery. The sCO2–ORC–biomass configuration showed higher exergy efficiency (41.1%) and lower exergy destruction (188.88 kW) compared to the sCO2–ORC–solar system (23.76% and 422.63 kW). Thermal efficiency (50.6%) and net power output (131.73 kW) were similar for both sources. However, the solar system (204,055.57 kg CO2-equi) had an 85.6% higher environmental impact than the biomass system (109,933.63 kg CO2-equi). Additionally, the construction phase contributed ~95% of emissions in both systems, followed by decommissioning (~4.5%) and operation (~0.1%). Finally, systems built with aluminum generate a higher carbon footprint than those with copper, with differences of 2% and 3.2% in sCO2–ORC–solar and sCO2–ORC–biomass, respectively. This study and an economic analysis make these systems viable thermo-sustainable options for clean energy generation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.