Abstract

Abstract In this two-part paper, the impact of level-II Weather Surveillance Radar-1988 Doppler (WSR-88D) radar reflectivity and radial velocity data on the prediction of a cluster of tornadic thunderstorms in the Advanced Regional Prediction System (ARPS) model is studied. Radar reflectivity data are used primarily in a cloud analysis procedure that retrieves the amount of hydrometeors and adjusts in-cloud temperature, moisture, and cloud fields, while radial velocity data are analyzed through a three-dimensional variational (3DVAR) data assimilation scheme that contains a 3D mass divergence constraint in the cost function. In Part I, the impact of the cloud analysis and modifications to the scheme are discussed. In this part, the impact of radial velocity data and the mass divergence constraint in the 3DVAR cost function are studied. The case studied is that of the 28 March 2000 Fort Worth tornadoes. The addition of the radial velocity improves the forecasts beyond that experienced with the cloud analysis alone. The prediction is able to forecast the morphology of individual storm cells on the 3-km grid up to 2 h; the rotating supercell characteristics of the storm that spawned two tornadoes are well captured; timing errors in the forecast are less than 15 min and location errors are less than 10 km at the time of the tornadoes. When forecasts were made with radial velocity assimilation but not reflectivity, they failed to predict nearly all storm cells. Using the current 3DVAR and cloud analysis procedure with 10-min intermittent assimilation cycles, reflectivity data are found to have a greater positive impact than radial velocity. The use of radial velocity does improve the storm forecast when combined with reflectivity assimilation, by, for example, improving the forecasting of the strong low-level vorticity centers associated with the tornadoes. Positive effects of including a mass divergence constraint in the 3DVAR cost function are also documented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.