Abstract

Stretchable energy storage devices receive a considerable attention at present due to their growing demand for powering wearable electronics. A vital component in stretchable energy storage devices is its electrode which should endure a large and repeated number of mechanical deformations during its prolonged use. It is crucial to develop a technology to fabricate highly deformable electrode in an easy and an economic manner. Here, the fabrication of stretchable electrode substrates using 3D-printing technology is reported. The ink for fabricating it contains a mixture of sacrificial sugar particles and polydimethylsiloxane resin which solidifies upon thermal curing. The printed stretchable substrate attains a porous structure after leaching the sugar particles in water. The resulting printed porous stretchable substrates are then utilized as electrodes for Li-ion batteries (LIBs) after loading them with electrode materials. The batteries with stretchable electrodes exhibit a decent electrochemical performance comparable to that of the conventional electrodes. The stretchable electrodes also exhibit a stable electrochemical performance under various mechanical deformations and even after several hundreds of stretch/release cycles. This work provides a feasible route for constructing LIBs with high stretchability and enhanced electrochemical performance thereby providing a platform for realizing stretchable batteries for next generation wearable electronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call