Abstract
AbstractIonic polymer–metal composites (IPMC)—constructed using an ionic polymer sandwiched between metal electrodes—have shown great potential for the fabrication of soft actuators. IPMC architectures have many advantages including low actuation voltage, fast response, basic control, and relatively light weight. Poly(acrylic acid) (PAA)‐based ion exchange membranes are of particular interest for IPMC devices due to their large ion exchange capacity and ease of preparation; however, they suffer from relatively weak mechanical strength. Here, PAA‐based soft actuators are synthesized with enhanced mechanical properties and proton conductivity through the incorporation of hydrogen bonding interactions with imidazolium groups via copolymerization with 1‐vinylimidazole. In addition to examining the impact of composition on physiochemical (swelling, glass transition, decomposition, Young's modulus, etc.) and electrochemical (specific capacitance) properties, an additive manufacturing process, digital light projection (DLP), is utilized to fabricate complex geometries demonstrating the potential for the fabrication of IPMC devices with complex actuation modalities. Planar DLP 3D‐printed IPMC actuators of varied polymer compositions are fabricated with activated carbon and copper electrodes, and their actuation performance is evaluated in air, where large bending deformation is observed (14°–37°).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.