Abstract
Three-dimensional printing technology has emerged as a versatile and cost-effective alternative for the fabrication of electrochemical sensors. To enhance sensor sensitivity and biocompatibility, a diverse range of biocompatible and conductive materials can be employed in these devices. This allows these sensors to be modified to detect a wide range of analytes in various fields. 3D-printed electrochemical sensors have the potential to play a pivotal role in personalized medicine by enabling the real-time monitoring of metabolite and biomarker levels. These data can be used to personalize treatment strategies and optimize patient outcomes. The portability and low-cost nature of 3D-printed electrochemical sensors make them suitable for point-of-care (POC) diagnostics. These tests enable rapid and decentralized analyses, aiding in diagnosis and treatment decisions in resource-limited settings. Among the techniques widely reported in the literature for 3D printing, the fused deposition modeling (FDM) technique is the most commonly used for the development of electrochemical devices due to the easy accessibility of equipment and materials. Focusing on the FDM technique, this review explores the critical factors influencing the fabrication of electrochemical sensors and discusses potential applications in clinical analysis, while acknowledging the challenges that need to be overcome for its effective adoption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.